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Surface Reconstruction
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Figure 1. Our method is robust to large errors in the initial pose.
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Figure 2. Our method is robust against sparse input with only 7
normal maps.

1. Additional results

This part introduces addtional results of our experiments.
The contents can also be found in our supplementary video.

1.1. Robustness against initial pose

In contrast to the conservative pose initialization in the
experiments of the main text, this section evaluates the abil-

Supplementary video available at: https://youtu.be/hLIZG24m1Wo

ity of our method under large initialization rotation errors.
As illustrated in Fig. 1, the results indicate that even with
rotation errors exceeding 70° at initialization, our method
successfully recovers the pose and achieves high-quality 3D
shape reconstruction. These results underscore the robust-
ness and effectiveness of our method.

1.2. Robustness against sparse inputs

In this part, we test the robustness of our method for pose
recovery and shape reconstruction under sparse viewpoints.
The results show that even in challenging scenarios with
only 7 normal maps as input and initial pose rotation errors
exceeding 35°, our method can still accurately recover both
the pose and the mesh shape. The result is shown as Fig. 2.

1.3. Robustness against view-independent surface
normals

As shown in Fig. 3, we test two special case for our
method: ball and cylinder. We render their normal in
Blender Software. The initial pose for optimization is set
as shown in Fig. 3. The recovered shape is accurate, but the
recovered camera pose differs from the ground truth due to
view-dependent surface normals as the geometric is sym-
metric.

1.4. Additional results on our RT3D dataset

As shown in Table 1, We quantitatively evaluate the re-
sults of our method on our RT3D dataset. Experimental re-
sults show that our method achieves significant advantages
in shape reconstruction compared to SuperNormal [1] with
slight noise in pose. The results of our pose-free method re-
mains comparable with SuperNormal [ 1] with ground truth
pose.

2. Initialization of pose

In the experimental section of our main text, we deter-
mine the radius as described and initialize using a circle as
shown in Fig. 4. This pose initial setting is used to test our
method on DiLiGenT-MYV [2] and our RT3D dataset.
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Figure 3. For view-independent surface normals, our method still recovers correct shape.

Table 1. Quantitative evaluation of shape and camera pose recov-
ery on our RT3D dataset. SuperNormal [1] with noisy camera
poses is indicated with * marker. The best and second-best results
are labeled in bold and underlined.

Method ‘ Metric ‘ MONKEY ~ CAT  PINEAPPLE DOG  DRAGON  TIGER ‘ Average
SuperNormal [1] 0.228  0.209 0.189 0232 0.160 0219 | 0.206
SuperNormal [1] * CD | 0.671 0.745 0.555 0.739  0.434 0490 | 0.606
PMNI (Ours) 0.251 0.318 0.160 0271 0204 0.245 | 0.241
SuperNormal [1] 0.974  0.956 0.986 0.954 0994 0965 | 0.972
SuperNormal [1] * | Fl-score T 0.464 0.473 0.571 0.365 0.690 0.645 0.663
PMNI (Ours) 0.973 0.906 0.995 0.922 0.964 0.941 0.950
PMNI RPE=r(°) | 0.230  0.356 0.258 0.258  0.439  0.582 | 0.354
RPEt | 0.011 0.017 0.008 0.010  0.011 0.026 | 0.014

While this setup may seem special, the results in Subsec-
tion 1.1 show that our method remains effective even with
large pose rotation errors exceeding 70°, demonstrating the
robustness of our method in causal capture.

In fact, our method does not rely on fixed camera tilt an-
gles, heights, or radii, nor does it require uniformly sampled
camera positions. Instead, capturing in a single direction
(clockwise or counterclockwise) is sufficient. Our method
is able to reconstruct high quality 3D model without camera
pose in causal capture.

3. Implementation Details
3.1. Network architecture

Fig. 5 shows our neural SDF architecture. x represents the
point in the space, ¢ represents the learnable hash encoding
parameters. In a word, our SDF network is a MLP with
point x as input and SDF function value f(x) as output.

3.2. Training details

We conduct our training on a single NVIDIA 4090 GPU,
consisting of a total of 30,000 epochs. In each epoch, 4,096
pixels are sampled from each image. Two Adam optimiz-
ers are used, one for the SDF network and the other for the
pose parameters. The learning rate for the SDF network is
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Figure 4. Camera pose initialization.

Hash  |h(x;¢) !
Encoding RelLU | &
x qilfs > f(x)
- =
— e
Contact
% X

Figure 5. Neural SDF architecture.

fixed at 5 x 10~* throughout the training. For the pose pa-
rameters, the learning rate is set to 1 x 10~ for epochs less
than 10,000, and 5 x 10~ for epochs between 10,000 and
30,000. For the weights, during epochs less than 10,000, the
weights for L,,qsk and Leironar are set to 1, the weight for
L,; is set to 0.3. As initial pose is totally wrong, the weight
for L,0rmar 18 0 in this period. Between epochs 10,000
and 20,000, the weights for L,,0rmai> Lmask> and Leikonal
terms are set to 1, and the weight for £,,; remains 0.3. Be-



tween epochs 20,000 and 30,000, the weights for £,,ormals
Lonasks Leikonal and L. are set to 1, while the weight for
L,; is reduced to 0 as it is only a prior not fully reliable.
It should be noted that different weight strategies were em-
ployed on public dataset and our real-world captured dataset
to achieve better performance, with specific implementation
details available in our code repository.
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