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Motivation:
• Reflective and textureless surfaces remain challenging for 3D reconstruction without precise camera pose

calibration, as RGB feature extraction and matching fails due to photometric inconsistency.
• Existing methods often require calibration boards, limiting their use in casual-capture setups.
• Surface normal maps maintain geometric consistency, offering a robust alternative to RGB images for

shape and pose estimation.
Contribution:
• PMNI is the first method achieving high-quality reflective surface reconstruction without camera pose

calibration.
• By leveraging multi-view surface normal maps from photometric stereo, PMNI can jointly optimize both

the surface shape and camera poses.
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Joint optimization of pose and shape:

L = λ0Lnormal + λ1Lni + λ2Lc + λ3Leikonal + λ4Lmask
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Experimental results
Qualitative results:
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Figure 7. Qualitative comparison of camera pose recovery on MONKEY and DOG object of RT3D dataset. The red line segment connects
the calibrated and estimated camera locations to illustrate the quality of pose recovery.
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Figure 8. Qualitative evaluation of shape recovery on MONKEY and DOG objects of the RT3D dataset.
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Figure 8. Qualitative evaluation of shape recovery on MONKEY and DOG objects of the RT3D dataset.
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Quantitative results:
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Figure 6. Summary of RT3D dataset for pose-free reflective surface reconstruction.

Table 3. Quantitative comparison between existing methods and
ours on camera pose and surface shape estimation.

Method RPEr(◦) ↓
MONKEY CAT PINEAPPLE DOG DRAGON TIGER Avg

DUSt3R [25] 3.175 2.049 2.640 2.216 2.602 4.839 2.920
Nope-NeRF [1] 9.371 8.472 7.513 8.674 8.467 8.282 8.463
SPARF [22] 7.233 6.395 3.485 3.620 0.731 0.695 3.693
CF-3DGS [8] 16.867 16.664 17.276 14.789 15.625 16.659 16.313
PMNI 0.230 0.356 0.258 0.258 0.439 0.582 0.354

Method RPEt ↓
MONKEY CAT PINEAPPLE DOG DRAGON TIGER Avg

DUSt3R [25] 0.329 0.199 0.247 0.490 0.224 0.335 0.304
Nope-NeRF [1] 0.695 0.596 0.610 0.774 0.654 0.637 0.661
SPARF [22] 0.375 0.203 0.146 0.261 0.041 0.058 0.181
CF-3DGS [8] 0.947 0.796 1.092 0.878 0.998 1.124 0.972
PMNI 0.015 0.020 0.016 0.019 0.027 0.035 0.022

Method Relative Depth Error ↓
MONKEY CAT PINEAPPLE DOG DRAGON TIGER Avg

DUSt3R [25] 0.062 0.056 0.046 0.147 0.046 0.075 0.072
Nope-NeRF [1] 0.276 0.191 0.305 0.489 0.231 0.176 0.278
SPARF [22] 0.099 0.055 0.038 0.131 0.029 0.050 0.067
CF-3DGS [8] 0.363 0.360 0.475 0.488 0.477 0.502 0.444
PMNI 0.011 0.017 0.008 0.010 0.011 0.026 0.014

RT3D dataset. To quantitatively evaluate reconstruction
quality on reflective surfaces, we construct a multi-view
dataset with ground-truth meshes. Fig. 6 shows our cap-
tured 6 objects with highly reflective surfaces. For each ob-
ject, we use a Canon EOS R5 camera to capture 20 views
surrounding the object. For each view, we take 11 images
under varying illumination by moving an area light source
to different positions. These multi-light images are used for
photometric stereo to generate reliable surface normals.

To facilitate camera pose calibration, we place each tar-
get object on an OLED screen displaying ArUco markers,
as shown in Fig. 6. The scene is captured twice, once with
the display on and once off. The images with ArUco mark-
ers are used for evaluation only. Images without ArUco
markers serve as input for baseline methods and our ap-
proach. Additionally, we scan the shape of the 6 objects
with an EinScan SP scanner1, which provides a reference
for qualitatively assessing the reconstructed shapes.

1https://www.einscan.com/einscan-sp. Retrieved Nov.
14th, 2024.

Table 4. Quantitative comparison between existing methods and
ours on camera pose and surface shape estimation.

Method RPEr (◦) ↓ RPEt ↓ Relative Depth Error ↓
Monkey Cat Pineapple Dog Dragon Tiger Avg Monkey Cat Pineapple Dog Dragon Tiger Avg Monkey Cat Pineapple Dog Dragon Tiger Avg

DUSt3R 3.175 2.049 2.640 2.216 2.602 4.839 2.920 0.329 0.199 0.247 0.490 0.224 0.335 0.304 0.062 0.056 0.046 0.147 0.046 0.075 0.072
Nope-NeRF 9.371 8.472 7.513 8.674 8.467 8.282 8.463 0.695 0.596 0.610 0.774 0.654 0.637 0.661 0.276 0.191 0.305 0.489 0.231 0.176 0.278
SPARF 7.233 6.395 3.485 3.620 0.731 0.695 3.693 0.375 0.203 0.146 0.261 0.041 0.058 0.181 0.099 0.055 0.038 0.131 0.029 0.050 0.067
CF-3DGS 16.867 16.664 17.276 14.789 15.625 16.659 16.313 0.947 0.796 1.092 0.878 0.998 1.124 0.972 0.363 0.360 0.475 0.488 0.477 0.502 0.444
Ours 0.230 0.356 0.258 0.258 0.439 0.582 0.354 0.015 0.020 0.016 0.019 0.027 0.035 0.022 0.011 0.017 0.008 0.010 0.011 0.026 0.014

Pose evaluation. As shown in Fig. 7, we visualize the
GT (shown in red) and estimated poses (shown in blue)
from existing methods and ours on MONKEY and DOG ob-
ject. The red line connecting the GT and estimated camera
positions illustrates the performance of pose recovery. CF-
3DGS [8] and Nope-NeRF [1] cannot produce reasonable
pose estimation, possibly due to the temporal continuity as-
sumption, which is not satisfied in the pose distribution of
RT3D. SPARF [22] applies a pre-trained dense correspon-
dence network, which may not generalize well on reflective
and textureless surfaces such as MONKEY and DOG, affect-
ing the pose estimation. DUSt3R [25] has relatively bet-
ter results based on learned point cloud correspondence but
there still remains a gap between its poses and GT. Given
a circular pose initialization shown in the second column,
the estimated poses from our method are accurately aligned
with the corresponding GT, as shown in the last column.

As shown in the top and middle rows of Table 4, our re-
covered poses, including rotation and translation, achieve
state-of-the-art performance over existing methods, demon-
strating the strength of using multi-view surface normals for
optimizing the camera poses.

Shape evaluation. As shown in Fig. 8, we compare es-
timated shapes from existing methods and ours, where
DUSt3R [25] and our method can output multi-view mesh,
and the shape visualizations from other methods are based
on depth. Consistent with the pose estimation, DUSt3R [25]
obtains better results than existing pose-free methods, but
is still unsatisfactory compared with scanned meshes. In
contrast, our PMNI gets detailed shape recoveries for the
two reflective and textureless surfaces, and the results are
close to SuperNormal [3] and scanned meshes, showing the
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Bring-home Message
• We propose PMNI, the first pose-free method for high-quality 3D reconstruction of reflective surfaces

using multi-view surface normal maps.
• By jointly optimizing shape and camera poses, our method achieves state-of-art performance without

precise calibration.


